32.59. Model: The magnetic field is that of a current in the wire. **Visualize:** Please refer to Figure P32.59.

Solve: As given in Equation 32.6 for a current carrying small segment $\Delta \vec{s}$, the Biot-Savart law is

$$\vec{B} = \frac{\mu_0}{4\pi} \frac{I\Delta \vec{s} \times \hat{r}}{r^2}$$

For the straight sections, $\Delta \vec{s} \times \hat{r} = 0$ because both $\Delta \vec{s}$ and \hat{r} point along the same line. That is not the case with the curved section over which $\Delta \vec{s}$ and \vec{r} are perpendicular. Thus,

$$B = \frac{\mu_0}{4\pi} \frac{I\Delta s}{r^2} = \frac{\mu_0}{4\pi} \frac{IRd\theta}{R^2} = \frac{\mu_0 Id\theta}{4\pi R}$$

where we used $\Delta s = R\Delta\theta \approx Rd\theta$ for the small arc length Δs . Integrating to obtain the total magnetic field at the center of the semicircle,

$$B = \int_{-\pi/2}^{\pi/2} \frac{\mu_0 I d\theta}{4\pi R} = \frac{\mu_0 I}{4\pi R} \pi = \frac{\mu_0 I}{4R}$$